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Introduction


 the data patterns yet are 
indistinguishable between datasets with 
and without a specific datum.



Telemetry data is diagnostic information 
collected by devices such as CPUs or 
OSes. This data can paint a vibrant 
picture of a user given appropriate 
analysis.

Research Question: How effective is 
differential privacy when it is applied in 
practice?



We replicated 4 papers implementing 
Differential Privacy (DP) in order to 
assess the utility lost from adding noise. 



The main idea of DP is to add noise into 
algorithms to ensure that results match

Results (for epsilon = 1)

 Methods Description Non-Private Private

Conditional

Probabilities

Probability of uncorrected 
error based on number of 
corrected errors

Histogram creation for 
event occurrence 

Laplace Mechanism 

Log. Regression 
Coefficient Test

Do corrected errors cause 
uncorrected errors? 
Testing 29 different errors

Wald test on logistic 
regression coefficient

Noisy Gradient Descent 
during LR training 

Lasso Regression Find features which best 
predict pack power usage

Coordinate Descent & 
Frank-Wolfe

Noisy Frank-Wolfe 
(Exponential Mechanism)

K-Means 
Clustering

Cluster devices based on 
usage counts

K-Means via Lloyd’s 
algorithm

Noisy mean computation 
during centroid updates
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Epsilon (log-scale)

Utility vs Epsilon (all tasks)

Private Wald test errantly found 
that 40% of cases that should’ve 
been significant were insignificant.

DP-KMeans centroids are 

near lower L1 distances given 
the skewed distribution.

Privatized Lasso needs different 
regularization due to sensitive convergence 
criteria, the algorithm performs well when d 
>> n unlike telemetry.

The corrected error (19) counts vs the 
uncorrected error (41 and 1001) 
percentages with and without noise at 

ε = 1. 

Normalized utility is a 
range from 0-1 of the 
accuracy of each 
model, relative to a 
baseline (non-private 
model)



Epsilon determines the 
trade-off between 
utility and privacy

Discussion

Epsilon below 10 is considered better 
than nothing, though epsilon of 10 is 
typically laughably poor. Only at these 
large epsilons do we see similar results 
as the nonprivate



Adding noise using python can be 
simple, scaling and tracking budgets 
requires following theorems from 
researchers!

Epsilon of 1
highly private

 is generally considered to 
be . In our tests, high 
privacy results in somewhat unusable 
and highly-incorrect analyses. Further, 
for some methods such as DP-GD, 
compute scales linearly with epsilon 
making meta-analysis more costly for 
higher values of epsilon.


Key Takeaways

 Practical application of DP likely 
requires a loosening of which agents 
must be protected agains

 Epsilon is a poor quantification of 
privacy for non-expert practitioners

 Even with large amounts of data, 
strong privacy guarantees suffer 
from grave utility los

 Privately selecting hyperparameters 
either requires vast domain 
knowledge or sacrificing some 
privacy budget

Original vs DP Histograms ε = 1 
1-D Clustering Visualization
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